
Nutrient Management for the upcoming Crop

Brian Arnall

b.arnall@okstate.edu

Nutrient Uptake

Nutrients removed in harvested crop

Crop	Unit	N	P2O5	K2O
Soybean	lb/bu	4.00	.80	1.4
Corn	lb/bu	.75	.44	.29
Wheat	lb/bu	1.29	.50	.30
Canola	lb/bu	1.88	.91	.46

Nutrient uptake by plant

Crop	Unit	N	P2O5	K2O
Soybean	lb/bu	5.26	.96	3.4
Corn	lb/bu	1.33	.56	1.33
Wheat	lb/bu	2.076	.675	2.3
Canola	lb/bu	3.00	1.33	2.4

Oklhoma Soil Test Levels

Phosphorus Levels

- 52%<40, 62%<50, 70%<60
- STP 10 → 11% rec 50 lbs P_2O_5 ac⁻¹ STP 20 → 15% rec 30 lbs P_2O_5 ac⁻¹ STP 30 → 14% rec 30 lbs P_2O_5 ac⁻¹

Potassium Levels

18%<160, 37%<240

```
^{\circ} STK 0-80 \rightarrow 3%
STK 80-160 \rightarrow 15%
STK 160-240 \rightarrow 17%
```

```
rec 100-70 lbs K_2O ac<sup>-1</sup> rec 70-50 lbs K_2O ac<sup>-1</sup> rec 50-0 lbs K_2O ac<sup>-1</sup>
```

Phosphorus

Soil P Index	Percent Sufficiency	P2O5 lb/ac
0	40	70
10	60	50
20	80	30
40	95	20
>65	100	0

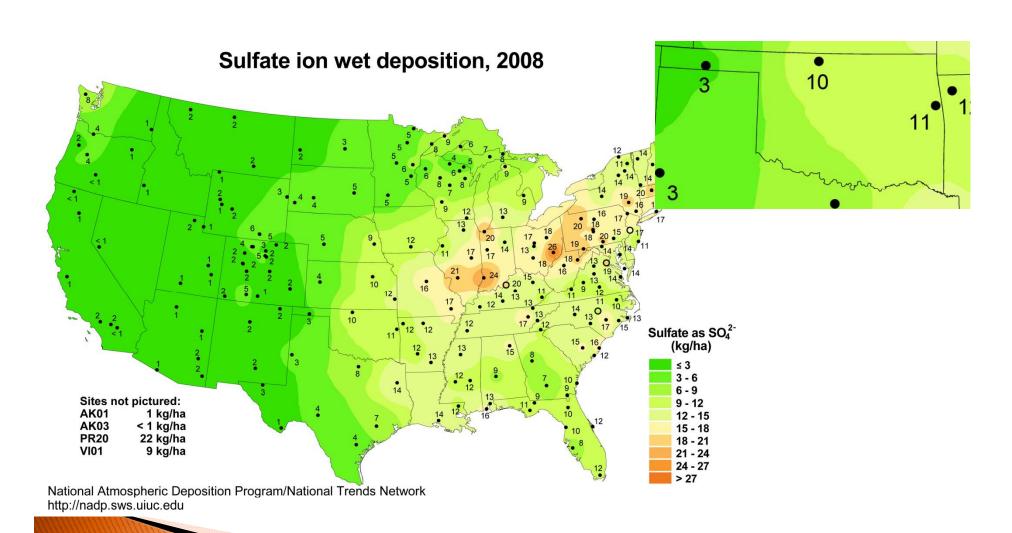
- \$8.50/bu \$0.36/ lb P₂O₅
- STP 20 : 30 lbs lb P₂O₅
- 50 bu Yield Potential : 10 Bu loss
- Spend \$10.8 plus application cost or lose \$85.00 in Yield
- STP 30: \$9.00 in fertilizer/ \$43.75 in Yield

Potassium

Soil K Index	Percent Sufficiency	K2O lb/ac
0	40	100
75	60	70
125	75	60
200	90	40
275	100	0
>350	100	0

- ▶ STK 125 : 60 lbs lb K₂O
- ▶ 50 bu Yield Potential : 12.5 Bu loss
- Spend \$28.8 plus application cost or lose \$106.25 in Yield
- STK 200: \$19.20 in fertilizer/ \$42.50 in Yield

Nitrogen


- The soybean a legume
 - In most cases N is not needed
 - If the field is well inoculated.
 - pH
- <60 bushels no N response in yield</p>
- Can Increase Plant Size
- > 60 can benefit from N is residual is low
 - It should be noted that soybeans are extremely sensitive to salt injury and any addition of with seed starter should be done with caution.
- Most N deficiencies in Oklahoma
 - not from exceptional yields
 - improper inoculation procedures or lack of inoculation.

Sulfur

Sulfur is similar to N in non legumes.

Yield Goal	Sulfur lbs/ac
10	3
20	6
30	9
40	12
50	15
60	18

S in Rainfall

Other Nutrients

- Molybdenum.
- Molybdenum (Mo) is sometimes deficient in highly acid soils. A seed treatment of 0.2-.04 ounce of Mo per acre may be applied.
- Liming will correct Mo deficiency.
- In Oklahoma test, liming has proven to be the best solution for Mo deficiency problems.
- Iron and Zinc
- Iron (Fe) and Zinc (Zn) deficiencies may occur on soybeans grown in calcareous (calcium and magnesium rich) and/or high pH (>7.5) soils.
- Foliar spraying of Fe is most effective but expensive.
 - Often fields that are only slightly deficient will grow out of the deficiency without a loss of yield.
- Zinc deficiencies can be corrected by the application of 2 to 4 pounds per acre of zinc in the form of a zinc sulfate or zinc chelate.
 - Normally Zn is applied with a starter fertilizer and may not need to be applied every year.

Fertility Issues

Banding with seed

- Soybeans are very sensitive to N and K. Reduced stand.
- Urea (46-0-0) and DAP (18-46-0) should be avoided as they can release large amounts of free ammonia (NH₃) that will damage seed and seedlings.

Broadcast application preplant or a 2x2 band

 Band application is recommended for soybeans, but broadcast application ahead of planting works well.

Historically

- Build the fertility levels on the crop previous to soybeans in the rotation, especially in double crop soybeans.
- Sufficient fertility must be carried over for the soybeans or additional fertilizer will have to be added for the soybean crop.
- P and K
 - total amount applied is less if the fertilizer is applied prior to the soybean crop as apposed to applying enough for the previous and soybean crop.

Thank you

